منابع مشابه
Approximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER
In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...
متن کاملHom-alternative Algebras and Hom-jordan Algebras
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra. INTRODUCTION Hom-algebraic structures are algebras where the identities defining the st...
متن کاملSimple Conformal Algebras Generated by Jordan Algebras
1 Background and Motivation We start with an example of affine Kac-Moody algebras and the Virasoro algebra. In this talk, F will be a field with characteristic 0, and all the vector spaces are assumed over F. Denote by Z the ring of integers and by N the set of nonnegative integers. Let 2 ≤ n ∈ N. Set sl(n,F) = {A ∈ Mn×n(F) | tr A = 0}, (1.1) 〈A,B〉 = tr AB for A,B ∈ sl(n,F), (1.2) where Mn×n(F)...
متن کاملCharacterization of Pseudo n-Jordan homomorphism Between unital algebras
Let A and B be Banach algebras and B be a right A-module. In this paper, under special hypotheses we prove that every pseudo (n+1)-Jordan homomorphism f:A----> B is a pseudo n-Jordan homomorphism and every pseudo n-Jordan homomorphism is an n-Jordan homomorphism
متن کاملLeft Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 2013
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-15231